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Abstract
We study the nonequilibrium phase transition in a contact process with extended
quenched defects by means of Monte Carlo simulations. We find that the spatial
disorder correlations dramatically increase the effects of the impurities. As a
result, the sharp phase transition is completely destroyed by smearing. This is
caused by effects similar to but stronger than the usual Griffiths phenomena,
namely, rare strongly coupled spatial regions can undergo the phase transition
independently from the bulk system. We determine both the stationary density
in the vicinity of the smeared transition and its time evolution, and compare
the simulation results to a recent theory based on extremal statistics.

PACS numbers: 05.70.Ln, 02.50.Ey, 64.60.Ht

1. Introduction

Rare regions are an important, if intricate, aspect of systems with impurities and defects.
In recent years, their influence on phase transitions and critical phenomena has reattracted
considerable attention. Rare region effects were first studied in the context of classical
equilibrium phase transitions. Griffiths [1] showed that they lead to a singular free energy in
an entire parameter region in the vicinity of the phase transition, now known as the Griffiths
region. However, in classical systems with uncorrelated disorder, this Griffiths singularity
in the free energy is an essential one and thus very weak and probably unobservable in
experiment. Disorder correlations generically increase the effects of impurities. Therefore,
stronger rare region effects have been found in classical systems with extended defects and
in random quantum systems (where the correlations are in the imaginary time direction).
In the random transverse field Ising model [2] or, equivalently, the classical McCoy–Wu
model [3], the Griffiths singularity takes a power law form, accompanied by a diverging
magnetic susceptibility in the Griffiths region. Very recently, it has been found that some
phase transitions can even be completely destroyed by smearing when the rare regions order
independently from the bulk system. This happens, e.g., in a classical Ising magnet with
planar defects [4] and in itinerant quantum ferromagnets [5].
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In this paper, we investigate the effects of rare regions on nonequilibrium phase
transitions with quenched spatial disorder. We concentrate on the prominent class of absorbing
state phase transitions which separate active, fluctuating states from inactive, absorbing states
where fluctuations cease entirely [6–9]. The generic universality class for absorbing state
transitions is directed percolation (DP) [10]. According to a conjecture by Janssen and
Grassberger [11], all absorbing state transitions with a scalar-order parameter, short-range
interactions and no extra symmetries or conservation laws belong to this class. Examples
include the transitions in the contact process [12], catalytic reactions [13], interface growth
[14], or turbulence [15].

The effects of uncorrelated spatial disorder, i.e., point-like defects, on the DP transition
have been studied in some detail in the past. According to the Harris criterion [16, 17], the DP
universality class is unstable against spatial disorder, because the (spatial) correlation length
exponent ν⊥ violates the inequality ν⊥ > 2/d for all spatial dimensionalities d < 4. Indeed,
in the corresponding field theory, spatial disorder leads to runaway flow of the renormalization
group (RG) equations [18], destroying the DP behaviour. Several other studies [19–22] agreed
on the instability of DP against spatial disorder, but a consistent picture has been slow to
evolve. Recently, Hooyberghs et al applied the Hamiltonian formalism [23] to the contact
process with spatial disorder [24]. Using a version of the Ma–Dasgupta–Hu strong-disorder
RG [25] these authors showed that the transition (at least for sufficiently strong disorder) is
controlled by an exotic infinite-randomness fixed point with activated rather than the usual
power-law scaling.

Very recently, it has been suggested [26] that extended spatial defects like dislocations,
disordered layers, or grain boundaries can have an even more dramatic effect on nonequilibrium
phase transitions in the DP universality class. Rare region effects similar to but stronger than
the usual Griffiths phenomena [1, 17] actually destroy the sharp transition by smearing. This
happens because rare strongly coupled spatial regions can undergo the transition independently
from the bulk system. Based on an extremal statistics approach it has been predicted [26] that
the spatial density distribution in the tail of the smeared transition is very inhomogeneous,
with the average stationary density and the survival probability depending exponentially on
the control parameter.

In this paper we present results of extensive Monte Carlo simulations of a two-
dimensional contact process with linear spatial defects which provide numerical evidence
for this smearing scenario in a realistic model with short-range couplings. The paper is
organized as follows. In section 2, we introduce the model and briefly summarize the results
of the extremal statistics theory for the smeared phase transition. In section 3 we present our
simulation method and the numerical results together with a comparison to the theoretical
predictions. We conclude in section 4 by discussing the importance of our results and their
generality.

2. Theory

2.1. Contact process with extended impurities

The contact process [12] is a prototypical system in the directed percolation universality class.
It can be interpreted, e.g., as a model for the spreading of a disease. The contact process
is defined on a d-dimensional hypercubic lattice. Each lattice site r can be active (occupied
by a particle) or inactive (empty). During the time evolution, active sites can infect their
neighbours or they can spontaneously become inactive. Specifically, particles are created at
empty sites at a rate λn/(2d) where n is the number of active nearest-neighbour sites and the
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‘birth rate’ λ is the control parameter. Particles are annihilated at unit rate. For small birth
rate λ, annihilation dominates, and the absorbing state without any particles is the only steady
state (inactive phase). For large birth rate λ, there is a steady state with finite particle density
(active phase). The two phases are separated by a nonequilibrium phase transition in the DP
universality class at λ = λ0

c .
Quenched spatial disorder can be introduced by making the birth rate λ a random function

of the lattice site. Point-like defects are described by spatially uncorrelated disorder. We
are interested in the case of extended defects which can be described by disorder perfectly
correlated in dcor dimensions, but uncorrelated in the remaining dr = d − dcor dimensions.
Here dcor = 1 and 2 corresponds to linear and planar defects, respectively. Thus, λ is a
function of rr which is the projection of the position vector r on the uncorrelated directions.
For definiteness, we assume that the birthrate values λ(rr ) are drawn from a binary probability
distribution

P [λ(rr )] = (1 − p)δ[λ(rr ) − λ] + pδ[λ(rr ) − cλ] (1)

where p and c are constants between 0 and 1. In other words, there are extended impurities of
spatial density p where the birth rate λ is reduced by a factor c.

2.2. Smeared phase transition

In this subsection, we briefly summarize the arguments leading to the smearing of the phase
transition and the predictions of the extremal statistics theory [26] to the extent necessary for
the comparison with the Monte Carlo results.

In analogy to the Griffiths phenomena [1, 17], there is a small but finite probability w

for finding a large spatial region of linear size Lr (in the uncorrelated directions) devoid of
impurities. Up to pre-exponential factors, this probability is given by

w ∼ exp
(−p̃Ldr

r

)
(2)

with p̃ = −ln(1 − p). These rare regions can be locally in the active phase, even if the bulk
system is still in the inactive phase. Since the impurities in our system are extended, each
rare region is infinite in dcor dimensions but finite in the remaining dr dimensions. This is a
crucial difference to systems with uncorrelated disorder, where the rare regions are finite. In
our system, each rare region can therefore undergo a true phase transition independently of
the rest of the system at some λc(Lr) > λ0

c . According to finite-size scaling [27],

λc(Lr) − λ0
c = AL−φ

r , (3)

where φ is the clean (d-dimensional) finite-size scaling shift exponent and A is the amplitude
for the crossover from a d-dimensional bulk system to a ‘slab’ infinite in dcor dimensions but
finite in dr dimensions. If the total dimensionality d = dcor + dr < 4, hyperscaling is valid,
and φ = 1/ν⊥ which we assume from now on.

The resulting global phase transition is very different from a conventional continuous
phase transition, where a nonzero-order parameter develops as a collective effect of the entire
system, accompanied by a diverging correlation length in all directions. In contrast, in our
system, the order parameter develops very inhomogeneously in space with different parts of
the system (i.e., different rr regions) ordering independently at different λ. Correspondingly,
the correlation length in the uncorrelated directions remains finite across the transition. This
defines a smeared transition.

In order to determine the global system properties in the vicinity of the smeared transition,
we combine (2) and (3) to obtain the probability for finding a rare region which becomes
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active at λc as

w(λc) ∼ exp
(−B

(
λc − λ0

c

)−dr ν⊥)
(4)

for λc − λ0
c → 0+. Here, B = p̃Adrν⊥ .

The total density ρ (the total number of active sites) at a certain λ is obtained by summing
over all active rare regions, i.e., all regions with λ > λc. Since the functional dependence on
λ of the density on any given active island is of power-law type it does not enter the leading
exponentials but only the pre-exponential factors. Thus, the stationary density develops an
exponential tail,

ρst(λ) ∼ exp
(−B

(
λ − λ0

c

)−drν⊥)
, (5)

for all birth rates λ above the clean critical point λ0
c . Analogous arguments can be made for

the survival probability P(λ) of a single seed site. If the seed site is on an active rare region
it will survive with a probability that depends on λ via a power law. If it is not on an active
rare region, the seed will die. To exponential accuracy the survival probability is thus also
given by (5). The local spatial density distribution in the tail of the smeared transition is very
inhomogeneous. On active rare regions, the density is of the same order of magnitude as in
the clean system. Away from these regions it is exponentially small.

We now turn to the dynamics in the tail of the smeared transition. The long-time decay of
the density (starting from a state with ρ = 1) is dominated by the rare regions while the bulk
contribution decays exponentially. According to finite-size scaling [27], the behaviour of the
correlation time ξt of a single rare region of size Lr in the vicinity of the clean bulk critical
point can be modelled by

ξt (�,Lr) ∼ L(zν⊥−z̃ν̃⊥)/ν⊥
r

∣∣� − AL−1/ν⊥
r

∣∣−z̃ν̃⊥
. (6)

Here � = λ − λ0
c > 0, z is the d-dimensional bulk dynamical critical exponent, and ν̃⊥

and z̃ are the correlation length and dynamical exponents of a dr -dimensional system. To
exponential accuracy, the time dependence of the total density is given by

ρ(λ, t) ∼
∫

dLr exp
[−p̃Ldr

r − Dt/ξt (�,Lr)
]

(7)

where D is a constant.
Let us first consider the time evolution at the clean critical point λ = λ0

c . For � = 0,
the correlation time (6) simplifies to ξt ∼ Lz

r . Using the saddle point method to evaluate the
integral (7), we find the leading long-time decay of the density to be given by a stretched
exponential,

ln ρ(t) ∼ −p̃z/(dr +z)tdr /(dr +z). (8)

For λ < λ0
c , i.e, in the absorbing phase, the correlation time of the largest islands does

not diverge but is cut off by the distance from the clean critical point, ξt ∼ �−zν . The large
islands with this correlation time dominate the variational integral (7). This leads to a simple
exponential decay with a decay constant τ ∼ �−zν .

The most interesting case is λ > λ0
c , i.e., the tail region of the smeared transition. Here,

we repeat the saddle point analysis with the full expression (6) for the correlation time. For
intermediate times t < tx ∼ (

λ − λ0
c

)−(dr +z)ν⊥ the decay of the average density is still given by
the stretched exponential (8). For times larger than the crossover time tx the system realizes
that some of the rare regions are in the active phase and contribute to a finite-steady state
density. The approach of the average density to this steady state value is characterized by a
power law.

ρ(t) − ρ(∞) ∼ t−ψ. (9)
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The value of ψ cannot be found by our methods since it depends on the neglected nonuniversal
pre-exponential factors.

3. Monte Carlo simulations

3.1. Simulation method

We now illustrate the smearing of the phase transition by extensive computer simulation
results for a 2d contact process with linear defects (dcor = dr = 1). There are a number of
different ways to actually implement the contact process on the computer (all equivalent with
respect to the universal behaviour). We follow the widely used algorithm described, e.g., by
Dickman [28]. Runs start at time t = 0 from some configuration of occupied and empty sites.
Each event consists of randomly selecting an occupied site r from a list of all Np occupied
sites, selecting a process: creation with probability λ(rr )/[1 + λ(rr )] or annihilation with
probability 1/[1 + λ(rr )] and, for creation, selecting one of the neighbouring sites of r. The
creation succeeds, if this neighbour is empty. The time increment associated with this event
is 1/Np.

Using this algorithm, we have performed simulations for linear system sizes up to
L = 3000 and impurity concentrations p = 0.2, 0.25, 0.3, 0.35 and 0.4. The relative
strength of the birth rate on the impurities was c = 0.2 for all simulations. The data presented
below represent averages of 200 disorder realizations. Because of the large system sizes and
the high number of realizations, the statistical errors are very low. The relative statistical
error of the average density ranges from δρ/ρ ≈ 10−4 at high densities to δρ/ρ ≈ 10−2 for
ρ ≈ 10−3 and to δρ/ρ ≈ 10−1 for the lowest shown densities ρ ≈ 10−6. Except at these
lowest densities, the error is smaller than or comparable with the line width in the figures.

We have chosen the above parameters, namely, a low concentration of impurities which
have a birth rate much smaller than the bulk, because these conditions are favourable for
observing the smeared transition in a finite-size simulation. If p was too large, the exponential
drop-offs in equations (5) and (8) would be very steep and hard to observe over a significant
range of λ or t, respectively. If c was too close to one, clean critical fluctuations would mask
the tail of the smeared transition.

3.2. Time evolution

In this subsection, we discuss the time evolution of the density starting from a completely
occupied lattice, ρ(0) = 1. Figure 1 presents an overview of the behaviour of a system
with impurity concentration p = 0.2, system size L = 3000 and several birth rates from
λ = 1.62 . . . 1.68. The clean critical point is at λ0

c = 1.6488 [20]. The figure shows that the
long-time decay of the density in the absorbing phase, λ < λ0

c , is approximately exponential,
in agreement with the expectation discussed after equation (8). The decay constant of this
exponential increases with decreasing λ. In contrast, for λ > λ0

c the density approaches a
nonzero value in the long-time limit. Close to λ0

c , the density appears to decay, but slower
than exponentially.

According to equation (8), the behaviour right at the clean critical point, λ = λ0
c , is

expected to be a stretched exponential rather than a simple exponential decay. To shed more
light on the time evolution at λ0

c , the behaviour of ln ρ as a function of tdr /(dr +z) is presented in
the left panel of figure 2 for several impurity concentrations p. For our system, dr/(dr + z) =
0.362 with z = 1.76 being the dynamical exponent of the clean 2d contact process [29]. The
figure shows that the data follow a stretched exponential behaviour ln ρ = −Et0.362 over
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Figure 1. Overview of the time evolution of the density ρ for a system with L = 3000 and p = 0.2
and several birth rates (λ = 1.68, . . . , 1.62 from top to bottom) in the vicinity of the clean critical
point λ0

c = 1.6488.
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Figure 2. Left: logarithm of the density at the clean critical point λ0
c as a function of tdr /(dr +z) =

t0.362 for several impurity concentrations (p = 0.2, . . . , 0.4 from top to bottom) and L = 3000.
The long-time behaviour follows a stretched exponential ln ρ = −Et0.362. Right: decay constant
E of the stretched exponential as a function of [−ln(1 − p)]z/(dr +z) = [−ln(1 − p)]0.638.

more than three orders of magnitude in ρ, in good agreement with equation (8) (the very
slight deviation of the curves from a straight line can be attributed to the pre-exponential
factors neglected in the extremal statistics theory). The right panel of figure 2 shows the
decay constant E, i.e., the slope of these curves as a function of p̃ = −ln(1 − p). In good
approximation, the values follow the power law E ∼ p̃z/(dr +z) = p̃0.638 predicted in (8).

In the tail of the smeared transition, i.e. for λ > λ0
c the density has a constant nonzero

value ρst = ρ(∞) in the long-time limit. Figure 3 illustrates the approach of the density to
this value. It shows ln[ρ(t)−ρst] as a function of ln(t) for several λ. The long-time behaviour
is clearly of power-law type, but the exponent depends on λ, i.e., it is nonuniversal. These
results agree with the corresponding prediction in equation (9).

3.3. Stationary state

In this subsection we present and analyse the simulation results for the stationary state in
the tail of the smeared transition, λ > λ0

c . Figure 4 shows a comparison of the stationary
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in the tail of the smeared transition for a system with p = 0.2 and L = 3000 and birth rate
λ = 1.71, 1.70, 1.69, 1.68 (top to bottom). The long-time behaviour is of power-law type,
(ρ(t) − ρst) ∼ t−ψ . Fits yield exponents of approximately 1.00, 1.08, 1.12 and 1.28, respectively.
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Figure 4. Stationary density ρst as a function of birth rate λ for a clean system and a system with
impurity concentration p = 0.2. System size is L = 1000.

density ρst as a function of λ between the clean system and a dirty system with p = 0.2. The
clean system (p = 0) has a sharp phase transition with a power-law singularity of the density,
ρst ∼ (

λ − λ0
c

)β
with β ≈ 0.58 in agreement with the literature [20]. In contrast, in the dirty

system, the density increases much more slowly with λ after crossing the clean critical point.
This suggests either a critical point with a very large exponent β or exponential behaviour.

Let us now investigate the behaviour of the dirty system in the low-density tail more
closely. In figure 5, we plot ln ρst as a function of

(
λ − λ0

c

)−dr ν⊥ for several impurity
concentrations p, as suggested by equation (5). The data in the left panel of figure 5 show that
the density tail is indeed exponential, following the prediction ln ρst = −B

(
λ − λ0

c

)−dr ν⊥ over
at least two orders of magnitude in ρst. (The clean 2d spatial correlation length exponent is
ν⊥ = 0.734 [29].) Fits of the data to equation (5) are used to determine the decay constants
B. The right panel of figure 5 shows these decays constants as function of p̃ = −ln(1 − p).
The dependence is close to linear, as predicted below equation (4) (slight deviations from the
theoretical prediction can again be attributed to the pre-exponential terms neglected in the
extremal statistics theory).
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fits to equation (5). Right: decay constant B as a function of −ln(1 − p).

4. Discussion and conclusions

To summarize, we have provided extensive numerical evidence that extended impurities
destroy the sharp nonequilibrium phase transition in the contact process by smearing and
lead to a (nonuniversal) exponential dependence of the density and other quantities on the
control parameter. These results are in agreement with the predictions of [26] which were
based on extremal statistics arguments and mean-field theory. In this section, we first relate
our findings to a power-counting analysis of the corresponding field theory. We then
compare our smeared phase transition to the more conventional Griffiths effects in the
contact process with point-like defects [1, 17], and discuss general implications for theory and
experiment.

The field-theoretic formulation of the contact process [30, 31] is the so-called Reggeon
field theory which was originally studied in the context of hadronic interactions at ultra-
relativistic energies (for a review see, e.g., [32]). In appropriate units, its action reads

S =
∫

ddr dt φ̃

[
∂t − κ − ∇2 +



2
(φ − φ̃)

]
φ (10)

where φ(r, t) represents the density while φ̃(r, t) is the Martin–Siggia–Rosen response field
and κ denotes the bare distance from the transition. A simple power counting analysis for the
scale dimension of  at the Gaussian fixed point yields [] = 4 − d, i.e., the upper critical
dimension of this field theory is d+

c = 4. Spatially quenched disorder (both uncorrelated or
correlated) can be taken into account by adding a term

Sdis = γ

∫
ddr rr

[∫
ddcor rcor dt φ̃φ

]2

(11)

where the outer integral is over the uncorrelated directions rr while the inner spatial integrals
are over the correlated directions rcor (see [18] for the uncorrelated case dcor = 0). Power
counting for the scale dimension of γ gives [γ ] = 4 − d + dcor. Uncorrelated disorder is
marginal at d = d+

c = 4, but disorder correlations increase the scale dimension of γ making
the disorder term renormalization-group relevant. The power-counting analysis thus predicts
stronger effects for correlated disorder than for point-like disorder, in agreement with our
results. Let us emphasize, however, that the smeared phase transition scenario found in this
paper cannot be obtained in a perturbative analysis of the Reggeon field theory because the
rare regions are non-perturbative degrees of freedom.
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Both conventional Griffiths effects and the smearing scenario found in this paper are
caused by rare large spatial regions which are locally in the active phase even if the bulk
system is not. The difference between Griffiths effects and the smearing of the transition is
the result of disorder correlations. For point-like defects, i.e., uncorrelated disorder, the rare
regions are of finite size and cannot undergo a true phase transition. Instead, they fluctuate
slowly which gives rise to Griffiths effects. In contrast, if the rare regions are infinite in at
least one dimension, a stronger effect occurs: each rare region can independently undergo the
phase transition and develop a nonzero steady state density. This leads to a smearing of the
global transition.

The smearing mechanism found here relies only on the existence of a true phase transition
on an isolated rare region. It should therefore apply not only to the directed percolation
universality class, but to an entire family of nonequilibrium universality classes for spreading
processes and reaction–diffusion systems. Note that while the presence or absence of smearing
is universal in the sense of critical phenomena (it depends on symmetries and dimensionality
only), the functional form of the density and other observables is not universal, it depends
on the details of the disorder distribution [4].

Smearing phenomena similar to that found here can also occur at equilibrium phase
transitions. At quantum phase transitions in itinerant electron systems, even point-like
impurities can lead to smearing [5] (the necessary disorder correlations are in imaginary time
direction). In contrast, for the classical Ising (Heisenberg) universality class, the impurities
have to be at least 2d (3d) for the transition to be smeared which makes the phenomenon less
likely to be observed [4].

In the context of our findings it is worth noting that, despite its ubiquity in theory and
simulations, clearcut experimental realizations of the directed percolation universality class
are strangely lacking [33]. To the best of our knowledge, the only verification so far has been
found in the spatio-temporal intermittency in ferrofluidic spikes [34]. We suggest that the
disorder-induced smearing found in this paper may explain the striking absence of directed
percolation scaling [33] in at least some of the experiments.
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